Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Protein Chem Struct Biol ; 137: 39-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37709381

RESUMO

Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.


Assuntos
Relógios Biológicos , Hormônios Esteroides Gonadais , Nervo Óptico
2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628722

RESUMO

For brain protection, the blood-brain barrier and blood-cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood-brain barrier and in the blood-cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.


Assuntos
Encéfalo , Cabeça , Composição de Medicamentos , Barreira Hematoencefálica , Ritmo Circadiano
3.
J. physiol. biochem ; 79(3): 467–487, ago. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-223742

RESUMO

Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance. (AU)


Assuntos
Humanos , Masculino , Feminino , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Resistência a Medicamentos , Proteínas de Membrana Transportadoras , Esteroides
4.
J Funct Biomater ; 14(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504857

RESUMO

The circadian clock controls behavior and physiology. Presently, there is clear evidence of a connection between this timing system and cancer development/progression. Moreover, circadian rhythm consideration in the therapeutic action of anticancer drugs can enhance the effectiveness of cancer therapy. Nanosized drug delivery systems (DDS) have been demonstrated to be suitable engineered platforms for drug targeted/sustained release. The investigation of the chronobiology-nanotechnology relationship, i.e., timing DDS performance according to a patient's circadian rhythm, may greatly improve cancer clinical outcomes. In the present work, we synthesized nanosystems based on an octa-arginine (R8)-modified poly(amidoamine) dendrimer conjugated with the anticancer drug paclitaxel (PTX), G4-PTX-R8, and its physicochemical properties were revealed to be appropriate for in vitro delivery. The influence of the circadian rhythm on its cellular internalization efficiency and potential therapeutic effect on human cervical cancer cells (HeLa) was studied. Cell-internalized PTX and caspase activity, as a measure of induced apoptosis, were monitored for six time points. Higher levels of PTX and caspase-3/9 were detected at T8, suggesting that the internalization of G4-PTX-R8 into HeLa cells and apoptosis are time-specific/-regulated phenomena. For a deeper understanding, the clock protein Bmal1-the main regulator of rhythmic activity, was silenced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology. Bmal1 silencing was revealed to have an impact on both PTX release and caspase activity, evidencing a potential role for circadian rhythm on drug delivery/therapeutic effect mediated by G4-PTX-R8.

6.
J Physiol Biochem ; 79(3): 467-487, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36995571

RESUMO

Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Resistência a Múltiplos Medicamentos , Masculino , Feminino , Humanos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Medicamentos , Proteínas de Membrana Transportadoras , Esteroides
7.
J Neurosci Res ; 101(4): 524-540, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583371

RESUMO

The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-ß (Aß) transport/degradation, contributing to Aß homeostasis. Inadequate Aß metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aß scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aß uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aß-488 and uptake was evaluated at different time points using flow cytometry. Aß uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aß scavengers rhythmicity and that Aß clearance is a rhythmic process possibly regulated by the rhythmic expression of Aß scavengers.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Lactente , Doença de Alzheimer/metabolismo , Plexo Corióideo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Ritmo Circadiano , Camundongos Transgênicos , Precursor de Proteína beta-Amiloide/genética , Modelos Animais de Doenças
8.
J Cell Physiol ; 237(8): 3239-3256, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35696609

RESUMO

The circadian system is responsible for internal functions and regulation of the organism according to environmental cues (zeitgebers). Circadian rhythm dysregulation or chronodisruption has been associated with several diseases, from mental to autoimmune diseases, and with life quality change. Following this, some therapies have been developed to correct circadian misalignments, such as light therapy and chronobiotics. In this manuscript, we describe the circadian-related diseases so far investigated, and studies reporting relevant data on this topic, evidencing this relationship, are included. Despite the actual limitations in published work, there is clear evidence of the correlation between circadian rhythm dysregulation and disease origin/development, and, in this way, clock-related therapies emerge as great progress in the clinical field. Future improvements in such interventions can lead to the development of successful chronotherapy strategies, deeply contributing to enhanced therapeutic outcomes.


Assuntos
Transtornos Cronobiológicos , Ritmo Circadiano , Doença , Transtornos Cronobiológicos/fisiopatologia , Transtornos Cronobiológicos/terapia , Ritmo Circadiano/fisiologia , Humanos
9.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269592

RESUMO

The choroid plexuses (CPs), located in the brain ventricles, form an interface between the blood and the cerebrospinal fluid named the blood-cerebrospinal barrier, which, by the presence of tight junctions, detoxification enzymes, and membrane transporters, limits the traffic of molecules into the central nervous system. It has already been shown that sex hormones regulate several CP functions, including the oscillations of its clock genes. However, it is less explored how the circadian rhythm regulates CP functions. This study aimed to evaluate the impact of sex hormones and circadian rhythms on the function of CP membrane transporters. The 24 h transcription profiles of the membrane transporters rAbca1, rAbcb1, rAbcc1, rAbcc4, rAbcg2, rAbcg4, and rOat3 were characterized in the CPs of intact male, intact female, sham-operated female, and gonadectomized rats. We found that rAbcc1 is expressed in a circadian way in the CPs of intact male rats, rAbcg2 in the CPs of intact female rats, and both rAbcc4 and rOat3 mRNA levels were expressed in a circadian way in the CPs of intact male and female rats. Next, using an in vitro model of the human blood-cerebrospinal fluid barrier, we also found that methotrexate (MTX) is transported in a circadian way across this barrier. The circadian pattern of Abcc4 found in the human CP epithelial papilloma cells might be partially responsible for MTX circadian transport across the basal membrane of CP epithelial cells.


Assuntos
Plexo Corióideo/metabolismo , Metotrexato/farmacocinética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Papiloma do Plexo Corióideo/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Castração , Linhagem Celular Tumoral , Ritmo Circadiano , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Metotrexato/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Papiloma do Plexo Corióideo/tratamento farmacológico , Papiloma do Plexo Corióideo/genética , Ratos , Caracteres Sexuais
10.
Polymers (Basel) ; 14(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215593

RESUMO

The conception of novel anticancer delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy. In this work, polyethylenimine (PEI) has been used to complex p53 encoded plasmid DNA (pDNA), and the anticancer drug methotrexate (MTX) has also been loaded into the vectors. To investigate the influence of circadian clock on drug/gene delivery efficiency, HeLa, C33A and fibroblast cells have been transfected with developed PEI/pDNA/MTX delivery vectors at six different time points. Phenomena as the cellular uptake/internalization, drug/gene delivery and p53 protein production have been evaluated. The cell-associated MTX fluorescence have been monitored, and p53 protein levels quantified. In HeLa and C33A cancer cells, significant levels of MTX were found for T8 and T12. For these time points, a high amount of p53 protein was quantified. Confocal microscopy images showed successful HeLa cell's uptake of PEI/pDNA/MTX particles, at T8. In comparison, poor levels of MTX and p53 protein were found in fibroblasts; nevertheless, results indicated rhythmicity. Data demonstrate the influence of circadian rhythm on both cancer-cells targeting ability and transfection performance of PEI/pDNA/MTX carriers and seemed to provide the optimum time for drug/gene delivery. This report adds a great contribution to the field of cancer chronobiology, highlighting the relationship between circadian rhythm and nanodelivery systems, and charting the path for further research on a, yet, poorly explored but promising topic.

11.
Biochem Pharmacol ; 197: 114915, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051386

RESUMO

The delivery of therapeutic drugs to the brain remains a major pharmacology challenge. A complex system of chemical surveillance to protect the brain from endogenous and exogenous toxicants at brain barriers hinders the uptake of many compounds with significant in vitro and ex vivo therapeutic properties. Despite the advances in the field in recent years, the components of this system are not completely understood. Recently, a large group of chemo-sensing receptors, have been identified in the blood-cerebrospinal fluid barrier. Among these chemo-sensing receptors, bitter taste receptors (TAS2R) hold promise as potential drug targets, as many TAS2R bind compounds with recognized neuroprotective activity (quercetin, resveratrol, among others). Whether activation of TAS2R by their ligands contributes to their diverse biological actions described in other cells and tissues is still debatable. In this review, we discuss the potential role of TAS2R gene family as the mediators of the biological activity of their ligands for the treatment of central nervous system disorders and discuss their potential to counteract drug resistance by improving drug delivery to the brain.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Fármacos Neuroprotetores/farmacologia , Paladar/efeitos dos fármacos , Paladar/fisiologia , Resultado do Tratamento
12.
Neuroendocrinology ; 112(2): 115-129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33774638

RESUMO

Melatonin, an indolamine mainly released from the pineal gland, is associated with many biological functions, namely, the modulation of circadian and seasonal rhythms, sleep inducer, regulator of energy metabolism, antioxidant, and anticarcinogenic. Although several pieces of evidence also recognize the influence of melatonin in the reproductive physiology, the crosstalk between melatonin and sex hormones is not clear. Here, we review the effects of sex differences in the circulating levels of melatonin and update the current knowledge on the link between sex hormones and melatonin. Furthermore, we explore the effects of melatonin on gonadal steroidogenesis and hormonal control in females. The literature review shows that despite the strong evidence that sex differences impact on the circadian profiles of melatonin, reports are still considerably ambiguous, and these differences may arise from several factors, like the use of contraceptive pills, hormonal status, and sleep deprivation. Furthermore, there has been an inconclusive debate about the characteristics of the reciprocal relationship between melatonin and reproductive hormones. In this regard, there is evidence for the role of melatonin in gonadal steroidogenesis brought about by research that shows that melatonin affects multiple transduction pathways that modulate Sertoli cell physiology and consequently spermatogenesis, and also estrogen and progesterone production. From the outcome of our research, it is possible to conclude that understanding the correlation between melatonin and reproductive hormones is crucial for the correction of several complications occurring during pregnancy, like preeclampsia, and for the control of climacteric symptoms.


Assuntos
Hormônios Esteroides Gonadais/metabolismo , Gônadas/metabolismo , Melatonina/metabolismo , Menopausa/metabolismo , Placenta/metabolismo , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Gravidez
13.
Prog Neurobiol ; 205: 102129, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343629

RESUMO

For several years, a great effort has been devoted to understand how circadian oscillations in physiological processes are determined by the circadian clock system. This system is composed by the master clock at the suprachiasmatic nucleus which sets the pace and tunes peripheral clocks in several organs. It was recently demonstrated that the choroid plexus epithelial cells that compose the blood-cerebrospinal fluid barrier hold a circadian clock which might control their multiple functions with implications for the maintenance of brain homeostasis. However, the choroid plexus activities regulated by its inner clock are still largely unknown. In this review, we propose that several choroid plexus functions might be regulated by the circadian clock, alike in other tissues. We provide evidences that the timing of cerebrospinal fluid secretion, clearance of amyloid-beta peptides and xenobiotics, and the barrier function of the blood-cerebrospinal fluid barrier are regulated by the circadian clock. These data, highlight that the circadian regulation of the blood-cerebrospinal fluid barrier must be taken into consideration for enhancing drug delivery to central nervous system disorders.


Assuntos
Plexo Corióideo , Relógios Circadianos , Peptídeos beta-Amiloides/metabolismo , Plexo Corióideo/metabolismo , Ritmo Circadiano , Núcleo Supraquiasmático/metabolismo
14.
J Mol Med (Berl) ; 99(10): 1349-1371, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34213595

RESUMO

Circadian clock is an impressive timing system responsible for the control of several metabolic, physiological and behavioural processes. Nowadays, the connection between the circadian clock and cancer occurrence and development is consensual. Therefore, the inclusion of circadian timing into cancer therapy may potentially offer a more effective and less toxic approach. This way, chronotherapy has been shown to improve cancer treatment efficacy. Despite this relevant finding, its clinical application is poorly exploited. The conception of novel anticancer drug delivery systems and the combination of chronobiology with nanotechnology may provide a powerful tool to optimize cancer therapy, instigating the incorporation of the circadian timing into clinical practice towards a more personalized drug delivery. This review focuses on the recent advances in the field of cancer chronobiology, on the link between cancer and the disruption of circadian rhythms and on the promising targeted drug nanodelivery approaches aiming the clinical application of cancer chronotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/fisiopatologia , Animais , Cronoterapia/métodos , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Humanos
15.
Pituitary ; 24(3): 400-411, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33433888

RESUMO

PURPOSE: Familial neurohypophyseal diabetes insipidus (FNDI) is a rare disorder characterized by childhood-onset progressive polyuria and polydipsia due to mutations in the arginine vasopressin (AVP) gene. The aim of the study was to describe the clinical and molecular characteristics of families with neurohypophyseal diabetes insipidus. METHODS: Five Portuguese families with autosomal dominant FNDI underwent sequencing of the AVP gene and the identified mutations were functionally characterized by in vitro studies. RESULTS: Three novel and two recurrent heterozygous mutations were identified in the AVP gene. These consisted of one initiation codon mutation in the signal peptide coding region (c.2T > C, p.Met1?), three missense mutations in the neurophysin II (NPII) coding region (c.154T > C, p.Cys52Arg; c.289C > G, p.Arg97Gly; and c.293G > C, p.Cys98Ser), and one nonsense mutation in the NPII coding region (c.343G > T, p.Glu115Ter). In vitro transfection of neuronal cells with expression vectors containing each mutation showed that the mutations resulted in intracellular retention of the vasopressin prohormone. Patients showed progressive symptoms of polyuria and polydipsia, but with wide variability in severity and age at onset. No clear genotype-phenotype correlation was observed. CONCLUSION: The intracellular accumulation of mutant vasopressin precursors supports the role of cellular toxicity of the mutant proteins in the etiology of the disorder and explains the progressive onset of the disorder. These findings further expand the AVP mutational spectrum in FNDI and contribute to the understanding of the molecular pathogenic mechanisms involved in FNDI.


Assuntos
Diabetes Insípido Neurogênico , Diabetes Insípido , Diabetes Mellitus , Arginina Vasopressina/genética , Diabetes Insípido Neurogênico/genética , Humanos , Mutação/genética , Neurofisinas/genética , Linhagem , Polidipsia , Poliúria , Vasopressinas/genética
16.
Mol Neurobiol ; 58(4): 1846-1858, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33409838

RESUMO

Among the more than 300 functions attributed to prolactin (PRL), this hormone has been associated with the induction of neurogenesis and differentiation of olfactory neurons especially during pregnancy, which are essential for maternal behavior. Despite the original hypothesis that PRL enters the central nervous system through a process mediated by PRL receptors (PRLR) at the choroid plexus (CP), recent data suggested that PRL transport into the brain is independent of its receptors. Based on transcriptomic data suggesting that PRL could be expressed in the CP, this work aimed to confirm PRL synthesis and secretion by CP epithelial cells (CPEC). The secretion of PRL and the distribution of PRLR in CPEC were further characterized using an in vitro model of the rat blood-cerebrospinal fluid barrier. RT-PCR analysis of PRL transcripts showed its presence in pregnant rat CP, in CPEC, and in the rat immortalized CP cell line, Z310. These observations were reinforced by immunocytochemistry staining of PRL in CPEC and Z310 cell cytoplasm. A 63-kDa immunoreactive PRL protein was detected by Western blot in CP protein extracts as well as in culture medium incubated with rat pituitary and samples of rat cerebrospinal fluid and serum. Positive immunocytochemistry staining of PRLR was present throughout the CPEC cytoplasm and in the apical and basal membrane of these cells. Altogether, our evidences suggest that CP is an alternative source of PRL to the brain, which might impact neurogenesis of olfactory neurons at the subventricular zone, given its proximity to the CP.


Assuntos
Plexo Corióideo/metabolismo , Prolactina/metabolismo , Animais , Plexo Corióideo/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Modelos Biológicos , Peptídeos/metabolismo , Gravidez , Prolactina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores da Prolactina/metabolismo
17.
Gen Comp Endocrinol ; 300: 113633, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33031801

RESUMO

Pregnancy and lactation are reproductive processes that rely on physiological adaptations that should be timely and adequately triggered to guarantee both maternal and fetal health. Pineal melatonin is a hormone that presents daily and seasonal variations that synchronizes the organism's physiology to the different demands across time through its specific mechanisms and ways of action. The reproductive system is a notable target for melatonin as it actively participates on reproductive physiology and regulates the hypothalamus-pituitary-gonads axis, influencing gonadotropins and sexual hormones synthesis and release. For its antioxidant properties, melatonin is also vital for the oocytes and spermatozoa quality and viability, and for blastocyst development. Maternal pineal melatonin blood levels increase during pregnancy and triggers the maternal physiological alterations in energy metabolism both during pregnancy and lactation to cope with the energy demands of both periods and to promote adequate mammary gland development. Moreover, maternal melatonin freely crosses the placenta and is the only source of this hormone to the fetus. It importantly times the conceptus physiology and influences its development and programing of several functions that depend on neural and brain development, ultimately priming adult behavior and energy and glucose metabolism. The present review aims to explain the above listed melatonin functions, including the potential alterations observed in the progeny gestated under maternal chronodisruption and/or hypomelatoninemia.


Assuntos
Desenvolvimento Fetal/fisiologia , Lactação/fisiologia , Melatonina/metabolismo , Glândula Pineal/metabolismo , Animais , Feminino , Humanos , Glândulas Mamárias Humanas/embriologia , Sistema Nervoso/embriologia , Gravidez
18.
Int J Mol Sci ; 21(18)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957439

RESUMO

Accumulation of amyloid-beta (Aß) in the brain is thought to derive from the impairment of Aß clearance mechanisms rather than from its overproduction, which consequently contributes to the development of Alzheimer's disease. The choroid plexus epithelial cells constitute an important clearance route for Aß, either by facilitating its transport from the cerebrospinal fluid to the blood, or by synthesizing and secreting various proteins involved in Aß degradation. Impaired choroid plexus synthesis, secretion, and transport of these Aß-metabolizing enzymes have been therefore associated with the disruption of Aß homeostasis and amyloid load. Factors such as aging, female gender, and circadian rhythm disturbances are related to the decline of choroid plexus functions that may be involved in the modulation of Aß-clearance mechanisms. In this study, we investigated the impact of age, sex hormones, and circadian rhythm on the expression of Aß scavengers such as apolipoprotein J, gelsolin, and transthyretin at the rat choroid plexus. Our results demonstrated that mRNA expression and both intracellular and secreted protein levels of the studied Aß scavengers are age-, sex-, and circadian-dependent. These data suggest that the Aß-degradation and clearance pathways at the choroid plexus, mediated by the presence of Aß scavengers, might be compromised as a consequence of aging and circadian disturbances. These are important findings that enhance the understanding of Aß-clearance-regulating mechanisms at the blood-cerebrospinal fluid barrier.


Assuntos
Envelhecimento/metabolismo , Peptídeos beta-Amiloides/metabolismo , Plexo Corióideo/metabolismo , Ritmo Circadiano/efeitos da radiação , Células Epiteliais/metabolismo , Sexo , Envelhecimento/genética , Animais , Clusterina/genética , Clusterina/metabolismo , Escuridão , Feminino , Gelsolina/genética , Gelsolina/metabolismo , Regulação da Expressão Gênica/genética , Homeostase , Luz , Masculino , Pré-Albumina/genética , Pré-Albumina/metabolismo , Ratos , Ratos Wistar
19.
J Alzheimers Dis ; 77(2): 795-806, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741824

RESUMO

BACKGROUND: The choroid plexus (CP), which constitutes the blood-cerebrospinal fluid barrier, was recently identified as an important component of the circadian clock system. OBJECTIVE: The fact that circadian rhythm disruption is closely associated to Alzheimer's disease (AD) led us to investigate whether AD pathology can contribute to disturbances of the circadian clock in the CP. METHODS: For this purpose, we evaluated the expression of core-clock genes at different time points, in 6- and 12-month-old female and male APP/PS1 mouse models of AD. In addition, we also assessed the effect of melatonin pre-treatment in vitro before amyloid-ß stimulus in the daily pattern of brain and muscle Arnt-like protein 1 (Bmal1) expression. RESULTS: Our results showed a dysregulation of circadian rhythmicity of Bmal1 expression in female and male APP/PS1 transgenic 12-month-old mice and of Period 2 (Per2) expression in male mice. In addition, a significant circadian pattern of Bmal1 was measured the intermittent melatonin pre-treatment group, showing that melatonin can reset the CP circadian clock. CONCLUSION: These results demonstrated a connection between AD and the disruption of circadian rhythm in the CP, representing an attractive target for disease prevention and/or treatment.


Assuntos
Fatores de Transcrição ARNTL/genética , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Plexo Corióideo/fisiologia , Ritmo Circadiano/fisiologia , Presenilina-1/genética , Fatores de Transcrição ARNTL/metabolismo , Doença de Alzheimer/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular Transformada , Plexo Corióideo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Periodicidade , Ratos
20.
Biochem Pharmacol ; 177: 113953, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272108

RESUMO

The regulation of transport mechanisms at brain barriers must be thoroughly understood, so that novel strategies for improving drug delivery to the brain can be designed. The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelial cells has been poorly studied in this regard despite its relevance for the protection of the central nervous system (CNS). This study assessed the role of bitter taste receptors (TAS2Rs), TAS2R14 and TAS2R39, in the transport of resveratrol across CP epithelial cells using an in vitro model of the human BCSFB. Both receptors are expressed in human CP cells and known to bind resveratrol. First, Ca2+ imaging assays demonstrated that resveratrol specifically activates the TAS2R14 receptor, but not TAS2R39, in these human CP epithelial cells. Then, we proceeded with permeation studies that showed resveratrol can cross the human BCSFB, from the blood to the CSF side and that TAS2R14 knockdown decreased the transport of resveratrol across these cells. Conversely, inhibition of efflux transporters ABCC1, ABCC4 or ABCG2 also restrained the transport of resveratrol across these cells. Interestingly, resveratrol upregulated the expression of ABCG2 located at the apical membrane of the cells via TAS2R14, whereas ABCC1 and ABCC4 at the basolateral membrane of the cells were not affected. Altogether, our study demonstrates that the BCSFB is a gateway for resveratrol entrance into the CNS and that the receptor TAS2R14 regulates its transport by regulating the action of efflux transporters at CP epithelial cells.


Assuntos
Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Resveratrol/sangue , Resveratrol/líquido cefalorraquidiano , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Plexo Corióideo/citologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Interferência de RNA , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Resveratrol/farmacologia , Papilas Gustativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...